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Resumo

A detecção de objetos passa por um momento muito promissor graças ao uso de redes
neurais convolucionais (CNNs). Diversos detectores de sucesso foram propostos nos últimos
anos e cada um conta com características muito diferentes em suas arquiteturas, tornando a
escolha do detector de melhor desempenho para determinada aplicação uma tarefa difícil.

Escolhemos quatro arquiteturas de detectores baseados em CNN de suma importância
dos últimos anos - Faster-RCNN (Ren et al., 2015), Faster-RCNN + FPN (Lin et al., 2017),
RetinaNet (Lin et al., 2018) e YOLOv3 (Redmon e Farhadi, 2018) - e analisamos o desempenho
de cada um no complexo e importante cenário de detecção de pessoas. Além disso, investigamos
este cenário através da detecção independente de 3 diferentes áreas do corpo humano: cabeça,
cabeça-ombro e corpo completo. Este trabalho se propõe como um guia para seleção de um
detector para cenários similares e da investigação de casos em que pode ser possível a construção
de um sistema detector mais poderoso através da união de múltiplos especializados em diferentes
partes sobrepostas de um objeto de estudo. Para treino e teste dos modelos, utilizamos a base
INRIA Person Dataset com novas anotações de cabeça e cabeça-ombro.

Palavras-chave: detecção de pessoas, rede neural convolucional, deep learning.



Abstract

Object detection currently goes through a very promising moment thankfully to the use
of convolutional neural networks (CNNs). Several successful architectures were proposed in the
last few years and each one counts with very different characteristics in its architectures, making
the decision of choosing a detector for a certain application a hard task.

We choose four CNN based detectors of major importance in the last few years -
Faster-RCNN (Ren et al., 2015), Faster-RCNN + FPN (Lin et al., 2017), RetinaNet (Lin et al.,
2018) and YOLOv3 (Redmon e Farhadi, 2018) - and analyze the performance of each in the
important scenario of person detection. Besides that, we investigate the person detection task
through the independent detection of three different areas of the human body: head, head plus
shoulder and full body. This work is proposed as a guide for selection of a detector for similar
scenarios and the investigation of cases that it’s possible to build a more powerful detector systems
through the combination of multiple detectors specialized in different overlapping regions of
an object of study. For training and testing the models, we use the established INRIA Person
Dataset with new annotations for head and head plus shoulder regions.

Keywords: pedestrian detection, convolutional neural network, deep learning.
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1 Introduction

The task of object detection is an area of study of computer vision which goal is to identify
objects in a image or video. In the last years, the proposal of deep learning models based on
Convolutions Neural Networks (CNNs) drastically improved the accuracy and efficiency, making
this task feasible for various industries, including in mobile applications.

Common images and videos primarily focus on people: about 35% of pixels in movies
and YouTube videos as well as about 25% of pixels in photographs belong to people (Laptev,
2013). Person detection attracted much attention in the last years due to development of
self-driving cars, surveillance and robotics. However, it is a very challenging problem because
different scenario conditions, luminosity, angle and scale of a person produce very sparse features.
As detectors have different meta-architectures and feature-extractors, it is clear to say that each
one behaves very differently for the same input.

Full-body human detection often suffers scenes in which people are not standing and
from occlusions among individuals. Besides that, many applications do not attempt to detect a
person head to toe, like face recognition and human tracking. Hence, much research emerged
then focused in the upper part of the human body, specifically in the head and head plus shoulder
region. We address each type of region as head and head-shoulder respectively, and body when
referring to the entire person. Figure 1.1 compares each region of interest.

The detection of each one of the described regions of interest resulted in a number of
different methods and custom architectures within the scientific community, usually related to a
particular case of use. Head and head-shoulder detection related publications are usually related
to people counting, while body detections applications usually are related to pedestrian detection,
surveillance or robotics. Regarding CNN-based detectors, it is known that different objects,
even if similar for human glance, produce completely different features to be considered and
consequently the behaviour and performance of each detector also differ.

In this dissertation, we select four of the most relevant and promising modern object
detectors - Faster-RCNN (Ren et al., 2015), Faster-RCNN + FPN (Lin et al., 2017), RetinaNet
(Lin et al., 2018) and YOLOv3 (Redmon e Farhadi, 2018) - and apply them in the scenario of
person detection. We present the performance of each selected model for each type of labeling
and compare its accuracy and speed. Besides, we compare how it’s possible to combine the
resulting inferences of each detector regarding a region of interest, detecting more persons. We
show that YOLOv3, as at least 3x faster than all others state of art detectors, can produce much
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Figure 1.1: Comparison of regions of interest. We address each type of region as head, head-shoulder and body,
respectively.

more accurate results when combining inferences aimed to different regions of interest (head,
head-shoulder and body) against other more accurate detectors, while still remaining the fastest.

1.1 Contributions

We summarize our contributions as two:

• We provide a concise survey of modern CNN-based detectors and analyze the perfor-
mance of each in the scenario of person detection.

• We explore the task of person detection considering multiple overlapping regions of
interest (head, head-shoulder and body) and analyze how to amount of features of these
regions contributes for the accuracy and speed for each analyzed detector. We hope that
the this type of implementation may be useful to cases that detecting the entire bounding
box of an object is not a requirement or confidence of detections needs to be improved.

1.2 Document Structure

The remainder of the dissertation is organized as follows. In Chapter 2 we highlight some of the
most relevant related publications. Chapter 3 introduces the extended INRIA Person Dataset,
used for experimenting in this dissertation. An overview of the analyzed detectors is presented in
Chapter 4, followed by considerations of the detectors and training in Chapter 5. Experimental
results and analysis are presented in Chapter 6. Finally, we draw our conclusion in Chapter 7.
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2 Related Work

In this chapter, we present a review of the most relevant studies related to this dissertation. We
start by presenting a historic approach for publications involving the general object detection,
followed by person detection studies. We then present specialized detectors created specifically
for the task of head detection and head plus shoulder detection. Finally, we describe related work
referring to the comparison of object detectors.

2.1 Object Detection

The earliest successes object detectors were based on the sliding window paradigm. The image
is divided into several windows and it’s attributed for each one the score of a potential detection
using the content inside that window. LeCun et al. (1989) applied convolution neural networks to
the recognition of handwritten zip codes. Viola Jones face detection framework (Viola e Jones,
2001) became one of the biggest marks in the area being the first with real-time detector with
competitive rates, later applied to many others objects of study.

The two-stage detector paradigm is divided in two parts: the first is responsible for
generating proposals and the second is responsible for analyzing these proposals into foreground
classes or background. R-CNN (Girshick et al., 2016) method applied a convolutional neural
network to the second stage and obtaining impressive results creating a new era in object detection.
R-CNN was improved with the introduction of SSPnet (He et al., 2014), drastically improving
the detector efficiency by sharing computation through a feature pyramid which is robust to
region size and scale. However, training was very complex and expensive because both R-CNN
and SSPnet required a complex multi-stage pipeline. Fast R-CNN (Girshick, 2015) proposed
a solution to this with a single-stage training, using a multi-task loss, while still improving
accuracy.

Faster R-CNN (Ren et al., 2015) introduces the Region Proposed Networks (RPNs),
integrating the proposal generation stagewith the second-stage classifier into a single convolutional
network obtaining nearly cost free region proposal generation. Several improvements to this
detector were proposed, like (Shrivastava et al., 2016), (Lin et al., 2017), (He et al., 2016) and
more recently Mask R-CNN (He et al., 2017). Mask R-CNN efficiently detects objects in an
image while simultaneously generating a high-quality segmentation mask for each instance.
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We stick to experimenting Faster R-CNN detector since Mask R-CNN is focused on instance
segmentation and demands segmentation labeling, which is not the focus of this dissertation.

In parallel, one-stage paradigms were explored and YOLO (Redmon et al., 2016),
SSD (Liu et al., 2016) and later RetinaNet (Lin et al., 2018) emerged. This paradigm refers
to architectures based on a single feed-forward convolutional network that predict classes and
it’s confidence without requiring a second stage classification operation. In this paradigm it’s
observed that usually accuracy is sacrificed in trade of speed, with YOLO (Redmon et al., 2016)
pushing this boundary even more.

YOLO was improved to YOLOv2 (Redmon e Farhadi, 2017) and severely improved its
accuracy while still remaining the fastest, although its accuracy was still lower than SSD and
much lower than Faster R-CNN. RetinaNet, later introduced, provides both excellent accuracy
and speed. The subsequent version of YOLOv2, YOLOv3 (Redmon e Farhadi, 2018), does not
reach RetinaNet accuracy but keep its position as the fastest until the present.

2.2 Person Detection

Person detection as one of the main cases in the area of object detection has a rich and continuous
history. Classic methods commonly use haar-like wavelets (Zhang et al., 2014) or histograms
of gradient orientation (HOG) (Dalal e Triggs, 2005) as features, and support vector machine
(SVM) (Alonso et al., 2007) or AdaBoost (Stauffer e Grimson, 2000) as the verification methods
on top of a sliding window based paradigm for proposal generation. At the time, the best classical
architectures lead to very similar performance. (Benenson et al., 2014).

More recently introduced, pedestrian detectors like (Tian et al., 2015a) and (Tian et al.,
2015b) are hybrid methods that combines traditional hand-crafted features and deep convolutional
features. Although generic object detectors are successful in person detection, the results are
not optimal as hand-crafted methods has been shown to be of critical importance for the task of
pedestrian detection: Zhang et al. (2016) demonstrates that Faster R-CNN alone have limited
success in the task of pedestrian detection and propose a detector based on RPN and custom
features optimized for pedestrian detection.

More recently, SAF R-CNN (Li et al., 2018) was build on top of Faster-RCNN proposes
a unification of a large-size sub-network and a small-size sub-network, reaching state-of-the-art
performance. The proposal of these type of detectors aims to reach top performance in the task
of person detection. However, the goal of this dissertation is to compare the performance of
general object detectors in this complex scenario.

Most of the head or head-shoulder region detection approach were addressed specifically
to the problem of people counting due to the condition of recurrent partial occlusion. At 2.2.1
and 2.2.2 we highlight detectors depending on its region of interest.
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2.2.1 Head Detection

The work of Lin et al. (2001), one of the pioneers of head detection, applied Haar wavelet
transforms to extract feature areas of head-like contours to be analyzed by a support vector
machine (SVM) that would classify the area as head or not.

Although the task of face detection reached considerable maturity (Mathias et al., 2014),
the more general task of head detection remained challenging. With the advent of deep learning,
several new methods were proposed in the last few years for this task. Gao et al. (2016) applies
the AdaBoost algorithm to obtain the head region proposals, which are used as input for a CNN
to produce head region proposals that will finally be classified by a linear support vector machine
(SVM).

More recently, Vu et al. (2015) extended the R-CNN object detector (Girshick et al.,
2014) combining multiple CNNs into a joint framework. Crowdnet (Boominathan et al., 2016)
combines deep and shallow fully convolutional networks to predict the density map for a given
crowd image through target the head region.

2.2.2 Head-shoulder Detection

Kilambi et al. (2008) proposed a blob-based method to estimate the number of people in urban
environments. However, blob-based methods can only detect moving objects and shadows greatly
affect the total count.

Li et al. (2008) applied the Histograms of Oriented Gradients (HOG) feature (Dalal e
Triggs, 2005) to detect the head-shoulder region. However, the method requires several seconds
to process a 320x240 image, which was too slow for real application. An extension of this
was proposed by Zeng e Ma (2010a) greatly improving the performance with a novel method
combining a Viola-Jones type classifier and a HOG feature based AdaBoost classifier, followed
by a particle filter tracker using local HOG features. Zeng e Ma (2010b) combines HOG with
LBP (Local Binary Pattern) reaching even more performance. We note that these proposers are
stand-alone pedestrian detectors consisting of hand-crafted features and boosted classifiers.

In the last few years, no more outstanding publications were proposed when targeting
head-shoulder regions. We also highlight that no head-shoulder CNN-based detector publications
were found.

2.3 Comparison of Object Detectors

Canziani et al. (2016) compares multiple state-of-the-art deep neural networks submitted to
the ImageNet challenge (Russakovsky et al., 2015), providing insights into the design choices
that can lead to efficient neural networks for practical application. Huang et al. (2017) explores
the speed, accuracy and memory trade-offs of modern detection systems and the influence of
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characteristics like feature extractor and image resolution through implementations of the Faster
R-CNN, R-FCN and SSD detectors in Tensorflow.

Both analysis are made in a very low-level, exploring deeply the performance details
of each studied architecture. Although such comparisons may be very useful to optimizing a
classification system, this is not the focus of this work. We focus on providing a high-level
overview of modern detectors systems to person detection and study the combination of multiple
detectors inferences aiming to different overlapping regions.
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3 Dataset

For training and evaluating the detectors and their results presented later in this dissertation we
use the established INRIA Person Dataset 1.

The dataset consists of images of humans taken from several viewpoints under varying
lighting conditions, ranges, human poses and cases of occlusion in both indoor and outdoor
activities. Image 3.1 contain some examples.

Figure 3.1: Examples of INRIA Person Dataset.

The dataset includes also the cropped version of the images. Unlike the original authors
we disconsider them and use only the full images for both training and testing the detectors. We
do so, in order not only to evaluate the detector in terms of false positive detections, but because
the analyzed detectors architectures do consider the background of a image and training it would
actually be prejudicial to the training. Besides, this gives a more realistic assessment on how well
a detector performs for real world applications. The negatives images are also ignored since the
selected detectors are trained only through positive cases. This results to 615 images for training
and 288 for testing.

As explained, we consider 3 types of labeling for training: head, head-shoulder and
body. For the body labeling type we use the original dataset annotations provided. The labels for
head and head-shoulder were manually created only to persons which were already annotated by
the original dataset: cases that a person is visible in the image but not originally labeled in the
dataset are ignored for keeping the training fairer and the modified dataset consistent, resulting in
1235 occurrences for each label in the training dataset and 589 for the testing dataset.

The size of the object is one of the main variables to be considered. The established
general object recognition dataset COCO (Lin et al., 2014), for example, categorizes the classes

1http://pascal.inrialpes.fr/data/human/
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depending on the average size for comparison of the detectors. Generally speaking, CNN-based
object detectors do perform worse for smaller objects and more details are provided in the next
chapter.

Images of the dataset have variant sizes from 176x232 to 1298x976 pixels and Figure
3.2 compares the distribution of the bounding boxes sizes of all 3 labels in the modified dataset.
Table 3.1 compares the same metrics regarding mean and standard deviation.

Figure 3.2: Distributions of bounding box width, height and areas of the modified INRIA Person Dataset. Better
visualized in colors.

width height area
mean std mean std mean std

head 39.5 19.7 44.4 23.2 2201.7 2238.6
head-shoulder 79.1 42.0 72.3 39.3 7269.6 7898.7
body 96.8 56.5 289.4 156.8 36058.9 41645.3

Table 3.1: Mean and Standard Deviation for width, height and area of bounding boxes in the INRIA Person Dataset.
Standard deviation is abbreviated as std.

The modified dataset is publicly available online 2.

2https://web.inf.ufpr.br/vri/
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4 Detectors Overview

We selected the most relevant detectors in the last years based on its performance and influence
to subsequent works. In the next sessions, we briefly present the detectors analyzed in this
dissertation. Details about the implementations and training are presented in the next chapter.

4.1 Faster R-CNN and Faster R-CNN + FPN

As a two-stage detector, Faster R-CNN (Ren et al., 2015) is composed of two networks: the first
is responsible for generating region proposals and the second to analyze these proposals. Instead
of using Selective Search (SS) like its predecessor introduced at (Girshick, 2015), Faster R-CNN
introduces Region Proposal Networks (RPNs), which is able to generate accurate and efficient
proposals nearly cost-free.

Since it’s creation in 2015, Faster R-CNN and it’s variants (Shrivastava et al., 2016) (Lin
et al., 2017) (He et al., 2016) has been very influential due to its excellent accuracy (see table 4.1)
and by popularizing the concept of anchors, later used for many detectors (including YOLOv2,
YOLOv3 and RetinaNet). Anchors are predefined bounding boxes that are placed through the
image with different sizes and ratios and these bounding boxes act as a reference when first
predicting object locations. In the case of Faster R-CNN, the RPN predicts the possibility of
the proposals originated by the anchors are background or foreground and refine these anchors.
The many proposals generated are then filtered by a Region of Interest (ROI) layer to generate
features of the same size.

In this dissertation, we also analyze an extension of Faster R-CNN which is integrated
with Feature Pyramids (FPN) (Lin et al., 2017). In brief, FPN constructs rich, multi-scale feature
pyramid from a single resolution input image with a top-down pathway and lateral connections.
We chose this extension since it holds best results (see table 4.1) as a two-stage detector in the
PASCAL VOC metric Everingham et al. (2006), which results are provided in this dissertation.

4.2 RetinaNet

As YOLO, RetinaNet is a one-stage object detector. It is composed of a backbone network and
two task-specific subnetworks. The backbone network computes a convolutional feature map over
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AP AP50 AP75 APS APM APL
Two-stage methods
Faster R-CNN+++ (He et al., 2016) 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w FPN (Lin et al., 2017) 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN by G-RMI (Huang et al., 2017) 34.7 55.5 36.7 36.7 13.5 38.1
Faster R-CNN w TDM (Shrivastava et al., 2016) 36.8 57.7 39.2 16.2 39.8 52.1
One-stage methods
YOLOv2 (Redmon e Farhadi, 2017) 21.6 44.0 19.2 19.2 5.0 22.4
SSD513 2016 (Fu et al., 2017) 31.2 50.4 33.3 10.2 34.5 49.8
DSSD513 (Fu et al., 2017) 33.2 53.3 35.2 13.0 35.4 51.1
RetinaNet (Lin et al., 2018) 39.1 59.1 42.3 21.8 42.7 50.2
RetinaNet (Lin et al., 2018) 40.8 61.1 44.1 24.1 44.2 51.2
YOLOv3 608 × 608 (Redmon e Farhadi, 2018) 33.0 57.9 34.4 18.3 35.4 41.9

Table 4.1: Average Precision of general object detectors on COCO test-dev. Table obtained from (Redmon e
Farhadi, 2018) with the backbone information occluded.

an entire input image and is an off-the-self convolutional network. It is also an adaptation of FPN
due to its efficiency to construct rich and multi-scale feature pyramids: each level of the pyramid
can be used for detecting objects at a different scale. The first subnetwork performs convolutional
object classification on the backbone’s output, while the second performs convolutional bounding
box regression.

It is pointed that the main reason that single-stage detectors reach lower accuracy is the
extreme foreground-background class imbalance encountered during training of dense detectors
is the central cause. These detectors evaluate up to 105 candidates locations, but only very
few have objects. This leads to an inefficient training as most locations are easy negatives
that do not contribute to learning and the large quantity can overwhelm training and lead to
degenerate models. Instead of downsampling dominant or oversampling minority cases like
Faster R-CNN, the publication proposes a new loss function called Focal loss for classification,
which significantly increased the accuracy.

RetinatNet currently holds state of art performance as most accurate detector on COCO
test-dev, surpassing even two-stage detectors. Table 4.1 displays the average precision of
multiple modern detectors on COCO test-dev. Besides, provides excellent trade-off with its
speed, with about 70ms inference time on it’s fastest architecture. See figure 6.2 for details.

4.3 YOLOv3

First introduced in Redmon et al. (2016), the YOLO detector as a one-stage detector is able to
direct predict bounding boxes and class probabilities with a single network in a single evaluation.
Generally, the system divides the input image into a grid and each grid cell is responsible for
detecting the object if the center of the object is inside it, predicting bounding boxes and a
confidence score for each. Since each grid cell outputs many bounding boxes, a Non Maximum
Suppression algorithm (NMS) is responsible for merging the bounding boxes of a same object
into one.
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Figure 4.1: Representation of the YOLO Detector. Image obtained from Redmon et al. (2016).

YOLO makes a significant number of localization errors and has relatively low recall
compared to region proposal-based methods and improvements to these were presented in
YOLOv2 (Redmon e Farhadi, 2017). Higher resolution images are accepted as input (the images
are resized randomly to different resolutions): the YOLO model uses up to 448x448 images
while the YOLOv2 uses up to 608x608 images, improving the detection of smaller objects.
Besides, batch normalization is added to prevent overfitting and the final fully connected layers
are modified to the use of anchor boxes to help prediction of the bounding boxes.

More improvements are followed in YOLOv3 (Redmon e Farhadi, 2018). The most
salient feature is that the detection happens in 3 different layers with different scales, greatly
improving the detection of smaller objects, the main shortcoming of YOLOv2. Although it does
not reach top accuracy (see table 4.1), YOLOv3 still reaches competitive results and is by far the
fastest detector, with inference times about 22ms on its fastest architecture. See figure 4.2 for
details.

Figure 4.2: Speed (ms) versus accuracy (AP) on COCO test-dev. Image obtained from Redmon e Farhadi (2018).
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5 Detector Considerations

The INRIA Person dataset has a considerable small number of images compared to new datasets
available in the scientific community and to keep compatibility with real world problems, we
keep standard data augmentation in training for all detection systems. Since the purpose of this
dissertation is to provide on overview of the performance of the selected detectors in the scenario
of person detection, no fine-tuning is performed, and we do not try to reach peak performance of
each detector. The results shown here are proposed as demonstration and reference to real world
applications. In brief, training is made simply with the selection of the optimal model based on
the validation loss through iterations in training and no longer than 10 hours.

Below we present relevant information about the evaluated detector systems:

• Faster-RCNN and Faster-RCNN + FPN: we use the Detectron implementation (Girshick
et al., 2018) and the system is trained with end-to-end training (Ren et al., 2015) since
we desire to train the entire network as a single training using all four loss function (rpn
regression loss, rpn objectness loss, detector regression loss and detector class loss).

• RetinaNet: we use the Detectron implementation (Girshick et al., 2018). The chosen
base model is ResNet-101-FPN backbone, which is presented with the best results in
(Lin et al., 2018) for the COCO challenge.

• YOLOv3: Our initial goal was to use only Keras-based implementations for all detectors,
but it was discontinued due to the facilities provided by Detectron. We use an open-
source implementation available at (qqwweee, 2018). We highlight that this detector
is a custom implementation of the original detector and the results may slightly differ
from what would be with the original detector. This detector is addressed as YOLOv3
for simplicity.

All models were initialized with pretrained weights for ImageNet classification (Rus-
sakovsky et al., 2015), provided by the respective repository authors. More details of training
and analysis can be found at 1.

All presented experiments were executed in a NVIDIA Titan X provided by the
Laboratory of Vision, Robotics and Imaging (VRI), part of the Department of Informatics in the
Universidade Federal do Paraná.

1https://github.com/lucasromanosantos/person-detection-comparison
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6 Result

In this chapter we report our results and comparisons of the selected detectors in the conditions
described in Section 5. All results here presented were experimented on the modified INRIA
Person Dataset test. We divide this section regarding the variable of interest of the analysis.

6.1 Effectiveness

We use the average precision (AP) to evaluate the accuracy of the detector. Ground truth and final
detections are matched using the PASCAL criterion (Everingham et al., 2006), which demands a
minimum overlap of 50% for two matching bounding boxes. The average precision is defined as∑N

i=0 Pi × 4Ri where N is the total number of images in the collection, Pi is precision at a cutoff
of i images, and 4Ri is the subtractions of recall between cutoff i − 1 and cutoff i. In practice,
this is closely approximated to the area under the precision/recall curve. Precision and recall are
defined as:

Precision =
TruePositives

TruePositives + FalsePositives

Recall =
TruePositives

TruePositives + FalseNegatives

Table 6.1 shows the AP for each detector. Generally we observe that the head labeling,
which bounding boxes are smaller and provide fewer features, consistently loses accuracy in
comparison to the others. The head-shoulder label results are very promising, with even higher
accuracy on YOLOv3 and RetinaNet than body.

AP Faster R-CNN Faster R-CNN + FPN RetinaNet YOLOv3
(2015) (2017) (2018) (2018)

head 0.8613 0.8805 0.6601 0.7047
head-shoulder 0.9081 0.8869 0.8328 0.8712
body 0.9203 0.9191 0.8317 0.8002

Table 6.1: Average Precision of each detector for each region of interest. We also highlight the year of publication of
each detector.

Surprisingly, the oldest detector (Faster R-CNN) had the best AP of all detectors for all
regions, barely surpassing it’s improved version (Faster R-CNNN + FPN). Intuitively, stronger



20

Faster R-CNN Faster R-CNN + FPN RetinaNet YOLOv3
TP FP TP FP TP FP TP FP

head 517 58 520 29 390 2 470 143
head-shoulder 538 35 523 11 491 8 518 31

body 544 33 542 15 490 3 473 6

Table 6.2: Relation of True and False Positives of each detector for each region of interest.

performance on classification should be positively correlated with stronger performance on
COCO test-dev detection, presented in Section 4. In this case, this was not true: although FPN
is part of architecture of the others three detectors (in the case of YOLOv3, a similar structure),
Faster R-CNN still reached better performance. We also highlight the poor performance of
YOLOv3 and RetinaNet for the head labeling. On the other side, both detectors performed better
with a medium amount of features, with higher AP on head-shoulder than body detection.

Table 6.2 compares the True Positives (TP) and False Positives (FP) inferences of
each detector. Except for RetinaNet, we observe the head label suffers with an alarming FP
rate, drastically bigger for YOLOv3. Generally speaking, head-shoulder and body labeling is
much more stable, with body having lesser cases of false positives. RetinaNet has shown to
be very sensible for avoiding false positives, with less occurrences for all cases. Although its
accuracy was not as satisfactory, YOLOv3 FPs occurrences for body is drastically lower than
head-shoulder, which counts with 7% more AP.

Figure 6.1: Precision vs Recall curve of head, head-shoulder and shoulder for each detector.
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In figure 6.1 we display the precision vs recall curve categorized by region for each
detector. The precision/recall curve is calculated with precision monotonically decreasing by
setting the precision for recall r to the maximum precision obtained for any recall r′ > r. All
detectors have a very high performance and similar curves, except for YOLOv3, as expected due
to the many occurrences of false positives for the head label. We also observe that despite the
better AP of Faster R-CNN, the FPN version significantly has a stabler precision/recall curve due
to its lower amounts of FPs.

6.2 Speed

Figure 6.2 shows the average inference time of each detector. The speed of each very similar to
what is reported in the respective publications, with the exception of RetinaNet with generally
higher inference times than Faster R-CNN + FPN.

The first thing that is very apparent is that despite being the most accurate, Faster R-CNN
is by far the slowest of all, with inference times approximately 10 times bigger than YOLOv3
and 4 times it’s improved version with FPN. It is expected that RetinaNet to be faster than Faster
R-CNN for being a single-stage detector and due to comparison in its original publication. In
our experiments this was not the case, with Faster R-CNN + FPN being 1.5 faster. Further
investigation is needed regarding this behavior.

Figure 6.2: Inference times of each detector for each region of interest. We remove the inference time of the first
image as caches and auto-tuning need to warm up.
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6.3 Combining inferences

This section investigates the joint of resulting bounding boxes of multiple specialized detectors.
This approach is much more computationally feasible nowadays due to the increasing speed of
CNN-based detectors, enabling the creation of a more powerful detector when more accuracy or
confidence of inferences is desired. Figure 6.3 displays an example of the same input image to
detectors trained in the different regions of interest.

Figure 6.3: Example of inferences to the same image. The figure displays inferences of RetinaNet to head,
head-shoulder and body, respectively. Combining the inferences would result in the correct detection of three
pedestrians.

Figure 6.4 compares the percentage of detected persons. These results are provided with
the removal of all false positives occurrences, thus we only evaluate recall improvements of the
combined detectors. As false positives are disconsidered, it’s important to keep in mind that this
approach benefit the presented high false positives detectors and do not correspond to out of the
box results.

The first thing that is very apparent is that the combination of all 3 detectors do not
provide outstanding recall results compared to the combination of only two regions. In the case
of RetinaNet, for example, the recall almost the same as the combination of only head-shoulder
and body regions. For the others detectors, the benefits are minimal.

In cases where the AP of certain region is low, the benefits of combining it with other is
also very low. RetinaNet counts with 66.21% head recall and combining it with head-shoulder or
body resulted in increasing recall of less than 2%. YOLOv3 would suffer from a similar behavior
but in fewer proportions due to the removal of false positives.

As expected, the benefits of combining the regions are very corresponding to the AP
of each independent region, but not strictly attached to it. In the case of Faster R-CNN, we
highlight that combining head plus head-shoulder and head-shoulder plus body resulted in the
same recall, even that the AP for head is 4% lower than head-shoulder. In the case of Faster
R-CNN + FPN, head plus body was the only one to surpass head-shoulder plus body combination
and surprisingly equalizing the recall of the combination of all 3 regions.

This approach has been shown very beneficial for faster and with lower AP detectors.
YOLOv3 has been able to reach 93.55% recall and still would be faster than all the others
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Figure 6.4: Gains of accuracy when combining the specialized detectors. The horizontal lines display the accuracy
of the individual respective detector. False positives are disconsidered.

detectors. Comparing to the head-shoulder only detection, the increase of recall would be almost
6%. Head and body regions combination is even more outstanding, with at least 10% of recall
increase. However, further investigation is required on false positives cases and the resulting AP.

In the scenario of person detection, it is clear to say that combining the detection of
two regions is very beneficial. The benefits are more outstanding if the detector has a lower AP
for the regions, which is expected of YOLOv3. However, YOLOv3 is much faster, making it
much more computationally feasible. If computational power is available and the possibility of
multiple labeling of the images in the dataset, combining the results should be considered if more
recall or increased confidence is desired. Figure 6.5 display the inferences and the corresponding
confidences of all detectors for the same input image.
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Figure 6.5: Comparison of inferences between different detectors and regions of interest.
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7 Conclusion and Future Work

In this dissertation we applied and explored results of multiple state-of-art CNN-based general
object detectors to person detection. Our goal is to provide a general performance of each detector
that can lead to the choice of the best suited detector for a real-world application. We evaluated
the performance of each in the task of person detection and demonstrated that although RetinaNet
holds the best results for the general task of object detection, further analysis of variables like
number of classes and training dataset size is required to the choice of the best suited detector.
For the presented conditions, Faster R-CNN was shown to be the most accurate, even being the
oldest of all.

Regarding person detection, we demonstrated that both detection aimed to the head or
head plus shoulder regions shows competitive results compared to aiming the complete body
and should be considered in this scenario. We also explored the detection of multiple regions
of interest, applying different labeling of overlapping regions (head, head-shoulder and body)
and explored the performance of each, including the possibility of combining the results of each
detector. This may be an option not only for person detection but for other complex objects
detections when more accuracy or confidence of inferences is desired. For this task, we concluded
that this approach is more beneficial when the average precision is lower and the detector faster,
which was the ideal case for YOLOv3. However, our analysis only considered the improvements
of recall, requiring more research in the impact to precision.

Although the experimental results give a general idea, further improvement is required to
the fairest training of the detectors: as explained, the training is made simply, with no exploration
of optimal trained models. The training process includes much more variables that may work
more or less depending on the architecture of the detector. The more correct or fair training
greatly influences both accuracy and speed. Besides, another possible area of investigation is to
study the combination of the multiple specialized detectors. While the naive approach would
be to run the multiple object detectors at the same time, it’s important to explore the optimal
combination of these into a single CNN.
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